Wednesday, November 5, 2014
Pc Temperature Alarm
Pc Temperature Alarm Circuit Diagram
Fig. 1 shows the circuit of the PC temperature alarm and Fig. 2 shows the pin configuration of sensor LM35. IC LM35 (IC1) is an easy-to-use temperature sensor. It is basically a three-terminal device (two supply leads plus the output) that operates over a wide supply range of 4 to 20V. It consumes only 56 µA at 5V and generates insignificant heat.
IC2 is an operational amplifier used here as a voltage comparator. VR1 pro- vides a reference voltage that can be set anywhere from 0V to approximately 1V, which matches the output voltage range of IC1. This reference voltage is applied to the inverting in- put of IC2 and the output of IC1 is coupled to the non-inverting input. Consequently, the output of IC2 is low if the output of IC1 is below the reference voltage, or high if the output of IC1 exceeds the reference voltage.
Pin details of LM35

Thursday, October 16, 2014
Simple IC LM35 Temperature Sensor Characteristics
From the picture above it can be seen that the temperature sensor IC LM35 basically have 3 pin that serves as a source of supply voltage of +5 volts DC, as a result of sensing the output pin in the form of a change in the DC voltage and Vout pin to Ground.
IC LM35 temperature sensor characteristics are:
- Temperature sensitivity, with linear scaling factor between voltage and temperature 10 mVolt / º C, so it can be calibrated directly in centigrade.
- Have the accuracy or the accuracy of the calibration is 0.5 º C at 25 º C.
- Has a maximum operating temperature range between -55 º C to +150 º C. Working at a voltage of 4 to 30 volts.
- Has current low at less than 60 mA.
- Have a low self-heating (low-heating) of less than 0.1 º C in still air.
- Has a low output impedance is 0.1 W for 1 mA load.
- have Nonlinearities only about ± ¼ º C.
Wednesday, October 8, 2014
latest Temperature Controlled NICD Charger by IC LM311
This circuit is for a temperature controlled constant current battery charger. It works with NICD, NIMH, and other rechargeable cells. The circuit works on the principle that most rechargeable batteries show an increase in temperature when the cells becomes fully charged. Overcharging is one of the main causes of short cell life, hot cells pop their internal seals and vent out electrolyte. As cells dry out, they lose capacity.
Theory
The transformer, bridge rectifier, and 1000uF capacitor provide around 22 Volts of DC power to run the rest of the circuit. The 7812 regulator drops this to 12V to run the 311 comparator and 4011 nand gates.
The start switch is pressed to start the charging cycle. This causes the two 4011 nand gates, which are wired as an r-s flip-flop, to go into the charging mode. The Red LED is lit, and the VMOS FET current switch is turned on. Charging current runs though the battery pack. If the battery starts out warmer than the reference temperature, the circuit will not switch into charging mode. Let the pack cool down. When the battery pack reaches a full state of charge, the differential temperature sensor causes the flip-flop to switch off, turning off the VMOS current switch, and lighting the Green LED.
The 7805 voltage regulator is wired as a constant current regulator. This provides a safe maximum charge current for a number of different cell types. The 500 ohm resistor across the VMOS FET sets the trickle charge current which flows through the battery pack after the bulk charging is finished.
The 1N5818 diode prevents the pack from discharging if the AC power is turned off.
The resistor, diode, and capacitor around the start switch cause the circuit to auto-start when power is first applied.
The differential temperature sensor circuit works by presenting two voltages to the input of the 311 comparator. The comparator output switches on or off depending on which input is at a higher voltage than the other. As the thermistors warm up, their resistance drops, lowering the associated comparator input. Since there are two sensors, the room temperature can vary and the circuit will only react to the difference in temperature between the sensors.
Friday, September 19, 2014
Two Wire Temperature Sensor
Remote temperature measurements have to be linked by some sort of cable to the relevant test instrument. Normally, this is a three-core cable: one core for the signal and the other two for the supply lines. If the link is required to be a two-core cable, one of the supply lines and the signal line have to be combined. This is possible with, for instance, temperature sensors LM334 and LM335. However, these devices provide an output that is directly proportional to absolute temperature and this is not always a practical proposition.
Circuit diagram :
Two-Wire Temperature Sensor Circuit Diagram
If an output signal that is directly proportional to the celsius temperature scale is desired, the present circuit, which uses a Type LM45 sensor, offers a good solution. The LM45 sensor is powered by an alternating voltage, while its out-put is a direct voltage.
The supply to the sensor is provided by a sine-wave generator, based on A 1 and A 2 (see diagram). The alternating volt-age is applied to the signal line in the two-core cable via coupling capacitor C 6 .
The sensor contains a volt-age-doubling rectifier formed by D 1 -D 2 -C 1 -C 2 . This network converts the applied alternating voltage into a direct voltage. Resistor R 2 isolates the output from the load capacitance, while choke L 1 couples the output signal of the sensor to the signal line in the cable. Choke L 1 and capacitor C 2 protect the output against the alternating voltage present on the line.
At the other end of the link, network R 3 -L 2 -C 4 forms a low-pass section that prevents the alternating supply voltage from combining with the sensor out-put. Capacitor C 5 prevents a direct current through R 3 , since this would attenuate the temper-ature-dependent voltage.
The output load should have a high resistance, some 100 kΩ or even higher. The circuit draws a current of a few mA.
Monday, September 8, 2014
Two Wire Temperature Sensor
The output load should have a high resistance, some 100 kΩ or even higher. The schema draws a current of a few mA.